	Welcome to our CHEM 4 lecture						
	Review clicker question: Mole and molar mass Go to <u>LearningCatalytics.com</u> Session ID =						
 How many ethanol molecules (C₂H₅OH) are in a 0.105-L sample of ethanol? The density of ethanol is 0.79 g/cm³. 							
	A) 1.1 x 10 ²⁴ ethanol molecules D) 1.1 x 10 ²¹ ethanol molecules						
	B) 3.0 x 10 ⁻²⁴ ethanol molecules E) 6.0 x 10 ²¹ ethanol molecules						
	C) 6.0 x 10 ²⁴ ethanol molecules F) 5.4 x 10 ²² ethanol molecules						
Ar	Answer: Flowchart: $L \rightarrow cm^3 \rightarrow g \rightarrow mole \rightarrow molecules$						
	(all steps in this flowchart refer to ethanol, C_2H_5OH)						
Molar mass of C ₂ H ₅ OH = 46.07 g/mol							
$(0.105 \text{ L}) \left(\frac{1000 \text{ cm}^3}{1 \text{ L}}\right) \left(\frac{0.79 \text{ g}}{1 \text{ cm}^3}\right) \left(\frac{1 \text{ mole}}{46.07 \text{ g}}\right) \left(\frac{6.022 \text{ x } 10^{23} \text{ C}_2 \text{H}_5 \text{OH}}{1 \text{ mole}}\right) = 1.0842737 \text{ x } 10^{24} \text{ C}_2 \text{H}_5 \text{OH}$ $3sf \qquad \qquad$							
	1						

Exam #2 results

What to improve? Here's our checklist of key behaviors that lead to success in CHEM 4:

- ✓ Visit our CHEM 4 website regularly: <u>tinyurl.com/SacStateChem4</u>
- Study efficiently with a focus on the homework:
 - (1) do the assigned reading, then (2) attend lecture, then (3) review the lecture slides or video. You should then be ready to do the homework.
 - ✓ If you do (1) (3) and start the required homework and have trouble, then put aside the homework and redo (1) and (3). Then try the optional homework.
 - ✓ If you still have trouble, put the homework aside and come to my office hours.
 - Remember is it okay if the homework is late, the most important thing is that you are really understanding the homework.

✓ Get help when needed:

- Put together a weekly study group.
- ✓ Jeff's office hours: MWF 9 9:30 am and 11 11:30 am; and by appointment.
- ✓ PAL office hours: link is on our CHEM 4 website.
- Complete all of the practice exams.

Everyone deserves a second chance! C2S program allows you to drop lowest exam.

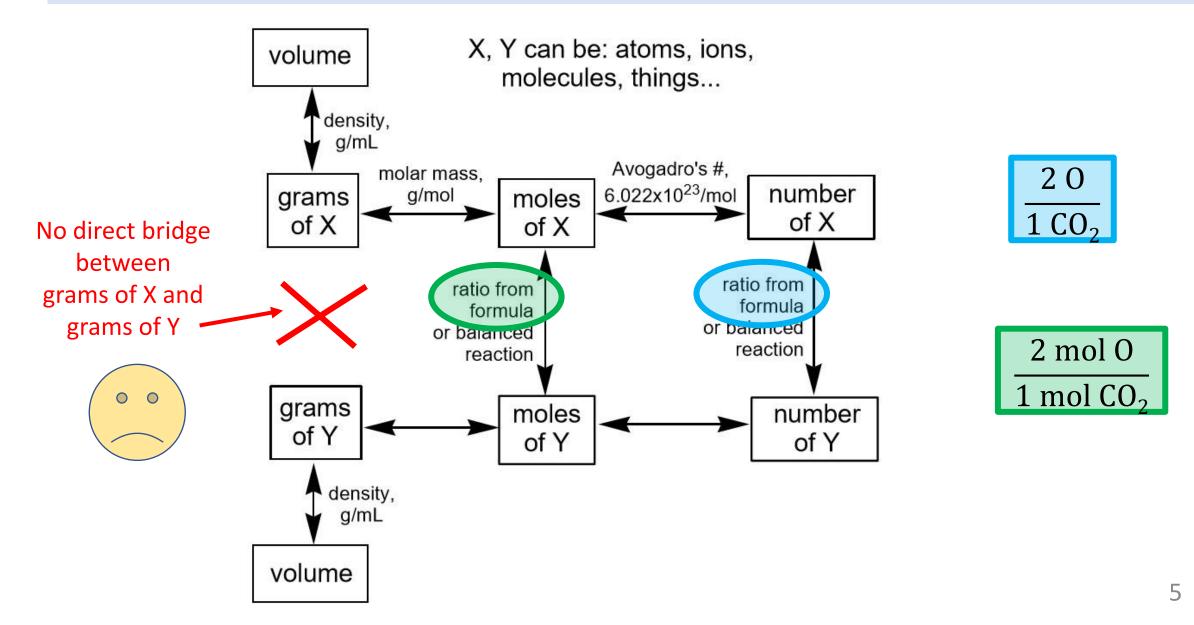
CHEM 4 lecture

Monday – November 9, 2020

Sec 6.5 Moles-to-mole ratios

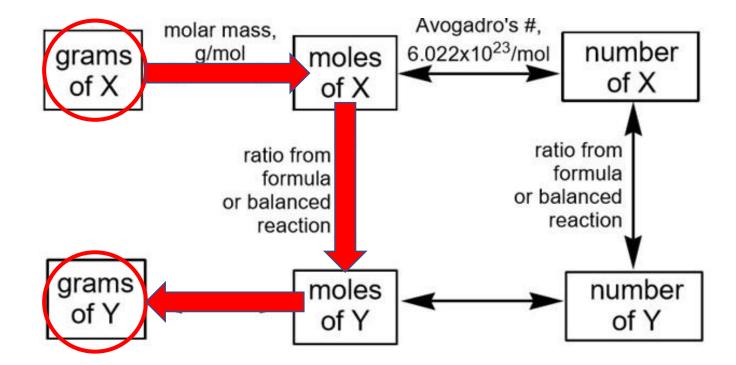
Reading clicker question: Mole-to-mole ratios (Sec 6.5) Go to LearningCatalytics.com Session ID =

- 2) Which of these samples would contain the greatest number of moles of oxygen atoms?
 - A) 3.0 moles of H_2O
 - B) 2.0 moles of CO


C) 2.0 moles of
$$CO_2$$

D) 1.0 mole of HNO_3

Answer:


A)
$$(3.0 \text{ moles of H}_2 \text{O}) \left(\frac{1 \text{ mol } 0}{1 \text{ mol H}_2 \text{O}}\right) = 3.0 \text{ mol } 0$$

B) $(2.0 \text{ moles of CO}) \left(\frac{1 \text{ mol } 0}{1 \text{ mol } \text{CO}}\right) = 2.0 \text{ mol } 0$
C) $(2.0 \text{ moles of CO}_2) \left(\frac{2 \text{ mol } 0}{1 \text{ mol } \text{CO}_2}\right) = 4.0 \text{ mol } 0$
D) $(1.0 \text{ moles of HNO}_3) \left(\frac{3 \text{ mol } 0}{1 \text{ mol } \text{HNO}_3}\right) = 3.0 \text{ mol } 0$

Section 6.5: Relating "moles of X" to "moles of Y" using a chemical formula

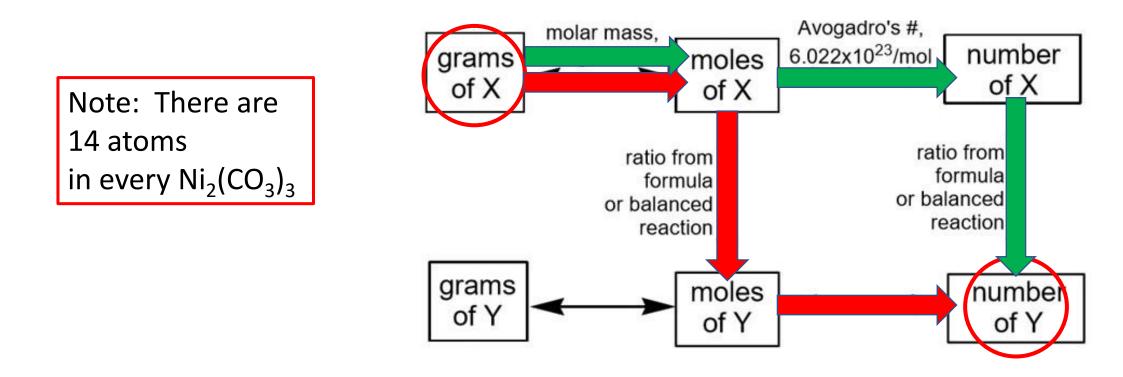
Sample calculation: Relating "moles of X" to "moles of Y"

<u>Ex</u>: A sample of calcium nitrate contains 0.15 g of O. What is the mass of the sample in grams?

Flowchart: $g O \rightarrow mol O \rightarrow mol sample \rightarrow g sample$ **Formula:** sample = $Ca(NO_3)_2$ Sample calculation continued... Relating "moles of X" to "moles of Y"

Ex: A sample of calcium nitrate contains 0.15 g of O. What is the mass of the sample in grams?

Answer:	Flowchart:	$g O \rightarrow mol$	$O \rightarrow mol Ca(NC)$	$(0_3)_2 \rightarrow g Ca(NO_3)_2$					
Molar mass:	164.10 g Ca 1 mol Ca($\frac{(NO_3)_2}{NO_3)_2}$ and	16.00 g 0 1 mol 0	* The molar mass of O doesn't depend on the compound's formula (it is not 6 x 16.00).					
Mole-to-mole	e ratio: $\frac{6 \text{ mol O}}{1 \text{ mol Ca(NO_3)}}$			The 6 in the compound's formula comes in during the mole-to-mole ratio (see * below), not the molar mass.					
Calculation:									
$(0.15 \text{ g O}) \left(\frac{1 \text{ mol O}}{16.00 \text{ g O}}\right) \left(\frac{1 \text{ mol Ca(NO_3)_2}}{6 \text{ mol O}}\right) \left(\frac{164.10 \text{ g Ca(NO_3)_2}}{1 \text{ mol Ca(NO_3)_2}}\right) = 0.256406 \text{ g}$									
2sf	4sf	∞ sf	5sf	= 0.26 g Ca(NO ₃) ₂					


Clicker question: Relating "moles of X" to "moles of Y" Go to LearningCatalytics.com Session ID =

3) What mass of Ni, in grams, can be isolated from 15 g of nickel(III) carbonate? The molar mass of nickel(III) carbonate = 297.41 g/mol.

A) 1.5 g Ni	C) 38 g Ni	E) 1.5 x 10 ² g Ni						
B) 76 g Ni	D) 3.0 g Ni	F) 5.9 g Ni						
Answer: Flowchart	: $g Ni_2(CO_3)_3 \rightarrow mole$	es $Ni_2(CO_3)_3 \rightarrow moles Ni \rightarrow g Ni$						
molar mass: $\frac{297.41 \text{ g Ni}_2(\text{CO}_3)_3}{1 \text{ mol Ni}_2(\text{CO}_3)_3} \text{ and } \frac{58.69 \text{ g Ni}}{1 \text{ mole Ni}}$								
mole-to-mole ratio: $\frac{2 \text{ moles Ni}}{1 \text{ mole Ni}_2(CO_3)_3}$								
Calculation:								
$(15 \text{ g Ni}_2(\text{CO}_3)_3) \left(\frac{1 \text{ mol Ni}_2(\text{CO}_3)_3}{297.41 \text{ g Ni}_2(\text{CO}_3)_3}\right) \left(\frac{2 \text{ moles Ni}}{1 \text{ mole Ni}_2(\text{CO}_3)_3}\right) \left(\frac{58.69 \text{ g Ni}}{1 \text{ mole Ni}}\right) = 5.92011 \text{ g Ni}_2(\text{CO}_3)_3}$								
2sf	5sf	∞ sf 4sf Keep 2sf						

Sample calculation: Relating "moles of X" to "moles of Y"

<u>Ex</u>: How many atoms are in $15 \text{ g of } \text{Ni}_2(\text{CO}_3)_3$?

Flowchart #1: Flowchart #2: $g \operatorname{Ni}_2(\operatorname{CO}_3)_3 \rightarrow \operatorname{mol}\operatorname{Ni}_2(\operatorname{CO}_3)_3 \rightarrow \operatorname{mol}\operatorname{atoms} \rightarrow \# \operatorname{atoms}$ $g \operatorname{Ni}_2(\operatorname{CO}_3)_3 \rightarrow \operatorname{mol}\operatorname{Ni}_2(\operatorname{CO}_3)_3 \rightarrow \# \operatorname{Ni}_2(\operatorname{CO}_3)_3 \rightarrow \# \operatorname{atoms}$ **Sample calculation continued...** Relating "moles of X" to "moles of Y"

<u>Ex</u>: How many atoms are in 15 g of $Ni_2(CO_3)_3$?

<u>Answer</u>: There are 14 atoms in each $Ni_2(CO_3)_3$

Flowchart #1: g Ni₂(CO₃)₃ \rightarrow mol Ni₂(CO₃)₃ \rightarrow mol atoms \rightarrow # atoms

 $(15 \text{ g Ni}_{2}(\text{CO}_{3})_{3}) \left(\frac{1 \text{ mol Ni}_{2}(\text{CO}_{3})_{3}}{297.41 \text{ g Ni}_{2}(\text{CO}_{3})_{3}}\right) \left(\frac{14 \text{ moles atoms}}{1 \text{ mole Ni}_{2}(\text{CO}_{3})_{3}}\right) \left(\frac{6.022 \text{ x } 10^{23} \text{ atoms}}{1 \text{ mole atoms}}\right) = 4.3 \text{ x } 10^{23} \text{ atoms}$

Flowchart #2: g Ni₂(CO₃)₃ \rightarrow mol Ni₂(CO₃)₃ \rightarrow # Ni₂(CO₃)₃ \rightarrow # atoms

 $(15 \text{ g Ni}_2(\text{CO}_3)_3) \left(\frac{1 \text{ mol Ni}_2(\text{CO}_3)_3}{297.41 \text{ g Ni}_2(\text{CO}_3)_3}\right) \left(\frac{6.022 \text{ x } 10^{23} \text{ Ni}_2(\text{CO}_3)_3}{1 \text{ mole Ni}_2(\text{CO}_3)_3}\right) \left(\frac{14 \text{ atoms}}{1 \text{ Ni}_2(\text{CO}_3)_3}\right) = 4.3 \text{ x } 10^{23} \text{ atoms}$

Clicker question: Relating "moles of X" to "moles of Y" Go to LearningCatalytics.com Session ID = How many atoms are in 8.50 g of dinitrogen tetroxide? 4) D) 3.34 x 10²³ atoms A) 5.56 x 10²² atoms B) 9.27 x 10²¹ atoms E) 2.83 x 10²⁷ atoms C) 4.71 x 10²⁶ atoms F) 7.79 x 10⁻²¹ atoms molar mass = $\frac{92.02 \text{ g N}_2 \text{O}_4}{1 \text{ mol N}_2 \text{O}_4}$ formula = N_2O_4 (there are 6 atoms in each N_2O_4) Answer: **Flowchart #1:** g N₂O₄ \rightarrow mole N₂O₄ \rightarrow moles atoms \rightarrow # atoms $(8.50 \text{ g } \text{N}_2\text{O}_4) \left(\frac{1 \text{ mol } \text{N}_2\text{O}_4}{92.02 \text{ g } \text{N}_2\text{O}_4}\right) \left(\frac{6 \text{ mol atoms}}{1 \text{ mol } \text{N}_2\text{O}_4}\right) \left(\frac{6.022 \text{ x } 10^{23} \text{ atoms}}{1 \text{ mole atoms}}\right) = 3.34 \text{ x } 10^{23} \text{ atoms}$ **Flowchart #2:** g N₂O₄ \rightarrow mole N₂O₄ \rightarrow # N₂O₄ \rightarrow # atoms

 $(8.50 \text{ g } \text{N}_2\text{O}_4) \left(\frac{1 \text{ mol } \text{N}_2\text{O}_4}{92.02 \text{ g } \text{N}_2\text{O}_4}\right) \left(\frac{6.022 \text{ x } 10^{23} \text{ N}_2\text{O}_4}{1 \text{ mol } \text{N}_2\text{O}_4}\right) \left(\frac{6 \text{ atoms}}{1 \text{ N}_2\text{O}_4}\right) = 3.34 \text{ x } 10^{23} \text{ atoms}$